Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Virus Res ; 339: 199268, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949376

RESUMO

Hand, foot, and mouth disease (HFMD) caused by a group of enteroviruses is a global public health problem. In recent years, coxsackievirus A6 (CVA6) has emerged as an important HFMD agent. Previous studies have shown that mutations of glycine 64 in RNA-dependent RNA polymerase (3D polymerase), which is central to viral replication, cause phenotypic changes such as ribavirin resistance, increased replication fidelity, and virulence attenuation in poliovirus and enterovirus A71. In this study, we constructed CVA6 mutants with G64R, G64S, and G64T substitutions by site-directed mutagenesis in full-length cDNA of an infectious CVA6 strain cloned in pcDNA3.1. Viral RNA was obtained by in vitro transcription, and the rescued virus strains were propagated in RD cells. Sequencing after six passages revealed that G64S and G64T mutations were stably inherited, whereas G64R was genetically unstable and reversed to the wild type. Comparison of the biological characteristics of the wild-type and mutant CVA6 strains in an in vivo model (one-day-old ICR mice) revealed that the pathogenicity of CVA6-G64S and CVA6-G64T was significantly reduced compared to wild-type CVA6. In vitro experiments indicated the mutant CVA6-G64S and CVA6-G64T strains had increased resistance to 0.8 mM ribavirin and a decreased replication rate in the presence of 0.8 mM guanidine hydrochloride. Our results show that mutation of residue 64 reduces CVA6 susceptibility to ribavirin and increases CVA6 susceptibility to guanidine hydrochloride, together with increased replication fidelity and attenuated viral pathogenicity, thus laying a foundation for the development of safe and effective live attenuated CVA6 vaccine.


Assuntos
Infecções por Enterovirus , Enterovirus , RNA Polimerase Dependente de RNA , Proteínas do Complexo da Replicase Viral , Animais , Camundongos , Anticorpos Antivirais , Enterovirus/genética , Enterovirus/patogenicidade , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Guanidina , Camundongos Endogâmicos ICR , Ribavirina/farmacologia , Ribavirina/uso terapêutico , RNA Polimerase Dependente de RNA/genética , Virulência , Proteínas do Complexo da Replicase Viral/genética
2.
Arch Virol ; 168(11): 273, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845386

RESUMO

The complete genome sequence of a new member of the family Mitoviridae was obtained from walking iris (Trimezia northiana (Schneev.) Ravenna by high-throughput sequencing. This is the first putative mitovirus identified in a monocotyledonous plant. The new mitovirus was tentatively named "walking iris virus 1" (WIV1). The complete genome of WIV1 is 2,858 nt in length with a single ORF encoding a viral replicase (RdRp). The highest level of amino acid sequence identity was 45% to Beta vulgaris mitovirus 1. In the viral replicase, a conserved protein domain for mitovirus RNA-dependent RNA polymerase and six highly conserved motifs were detected, consistent with other members of the family Mitoviridae. Phylogenetic inferences placed WIV1 among members of the genus Duamitovirus (family Mitoviridae) in a monophyletic clade with other plant mitoviruses. Sequence comparison and phylogenetic analysis support the classification of WIV1 as a new member of the genus Duamitovirus (family Mitoviridae).


Assuntos
Micovírus , Iridaceae , Vírus de RNA , Vírus , Filogenia , Proteínas do Complexo da Replicase Viral/genética , Micovírus/genética , Vírus de RNA/genética , Vírus/genética , Genoma Viral , RNA Viral/genética , RNA Viral/química , Fases de Leitura Aberta , Doenças das Plantas
3.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494386

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/genética , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas do Complexo da Replicase Viral/metabolismo , Infecção Persistente , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Sarampo/genética , Sarampo/metabolismo
4.
Influenza Other Respir Viruses ; 17(3): e13112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36875207

RESUMO

Background: Influenza virus causes significant morbidity and mortality with pandemic threat. Oleaceae Fructus Forsythiae is a medicinal herb. This study aimed to investigate antiviral effect of Phillyrin, a purified bioactive compound from this herb, and its reformulated preparation FS21 against influenza and its mechanism. Methods: Madin-Darby Canine Kidney (MDCK) cells were infected by one of six influenza viruses: five influenza A viruses (IAVs: three H1N1 and two H3N2) and one influenza B virus (IBV). Virus-induced cytopathic effects were observed and recorded under microscope. Viral replication and mRNA transcription were evaluated by quantitative polymerase chain reaction (qPCR) and protein expression by Western blot. Infectious virus production was assessed using TCID50 assay, and IC50 was calculated accordingly. Pretreatment and time-of-addition experiments with Phillyrin or FS21 added 1 h before or in early (0-3 h), mid (3-6 h), or late (6-9 h) stages of viral infection were performed to assess their antiviral effects. Mechanistic studies included hemagglutination and neuraminidase inhibition, viral binding and entry, endosomal acidification, and plasmid-based influenza RNA polymerase activity. Results: Phillyrin and FS21 had potent antiviral effects against all six IAV and IBV in a dose-dependent manner. Mechanistic studies showed that both suppressed influenza viral RNA polymerase with no effect on virus-mediated hemagglutination inhibition, viral binding or entry, endosomal acidification, or neuraminidase activity. Conclusions: Phillyrin and FS21 have broad and potent antiviral effects against influenza viruses with inhibition of viral RNA polymerase as the distinct antiviral mechanism.


Assuntos
Antivirais , Glucosídeos , Infecções por Orthomyxoviridae , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Neuraminidase , Proteínas do Complexo da Replicase Viral , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Glucosídeos/farmacologia
5.
J Virol ; 97(3): e0128422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786601

RESUMO

The three genomic and a single subgenomic RNA of Cowpea chlorotic mottle virus (CCMV), which is pathogenic to plants, is packaged into three morphologically indistinguishable icosahedral virions with T=3 symmetry. The two virion types, C1V and C2V, package genomic RNAs 1 (C1) and 2 (C2), respectively. The third virion type, C3+4V, copackages genomic RNA3 and its subgenomic RNA (RNA4). In this study, we sought to evaluate how the alteration of native capsid dynamics by the host and viral replicase modulate the general biology of the virus. The application of a series of biochemical, molecular, and biological assays revealed the following. (i) Proteolytic analysis of the three virion types of CCMV assembled individually in planta revealed that, while retaining the structural integrity, C1V and C2V virions released peptide regions encompassing the N-terminal arginine-rich RNA binding motif. In contrast, a minor population of the C3+4V virion type was sensitive to trypsin-releasing peptides encompassing the entire capsid protein region. (ii) The wild-type CCMV virions purified from cowpea are highly susceptible to trypsin digestion, while those from Nicotiana benthamiana remained resistant, and (iii) finally, the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis evaluated the relative dynamics of C3+4V and B3+4V virions assembled under the control of the homologous versus heterologous replicase. The role of viral replicase in modulating the capsid dynamics was evident by the differential sensitivity to protease exhibited by B3+4V and C3+4V virions assembled under the homologous versus heterologous replicase. Our results collectively conclude that constant modulation of capsid dynamics by the host and viral replicase is obligatory for successful infection. IMPORTANCE Infectious virus particles or virions are considered static structures and undergo various conformational transitions to replicate and infect many eukaryotic cells. In viruses, conformational changes are essential for establishing infection and evolution. Although viral capsid fluctuations, referred to as dynamics or breathing, have been well studied in RNA viruses pathogenic to animals, such information is limited among plant viruses. The primary focus of this study is to address how capsid dynamics of plant-pathogenic RNA viruses, namely, Cowpea chlorotic mottle (CCMV) and Brome mosaic virus (BMV), are modulated by the host and viral replicase. The results presented have improved and transformed our understanding of the functional relationship between capsid dynamics and the general biology of the virus. They are likely to provide stimulus to extend similar studies to viruses pathogenic to eukaryotic organisms.


Assuntos
Bromovirus , Capsídeo , Interações entre Hospedeiro e Microrganismos , Plantas , Proteínas do Complexo da Replicase Viral , Bromovirus/enzimologia , Bromovirus/genética , Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Tripsina/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , RNA Subgenômico
6.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241425

RESUMO

New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Cromatografia Líquida , Códon sem Sentido , RNA Polimerases Dirigidas por DNA/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Estudo de Associação Genômica Ampla , Humanos , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Espectrometria de Massas em Tandem , Proteínas do Complexo da Replicase Viral , Replicação Viral/genética
7.
J Hepatol ; 78(4): 704-716, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574921

RESUMO

BACKGROUND & AIMS: Appropriate treatment options are lacking for hepatitis E virus (HEV)-infected pregnant women and immunocompromised individuals. Thus, we aimed to identify efficient anti-HEV drugs through high-throughput screening, validate them in vitro and in vivo (in a preclinical animal study), and elucidate their underlying antiviral mechanism of action. METHODS: Using appropriate cellular and rodent HEV infection models, we studied a critical pathway for host-HEV interactions and performed a preclinical study of the corresponding antivirals, which target proteostasis of the HEV replicase. RESULTS: We found 17 inhibitors that target HEV-HSP90 interactions by unbiased compound library screening on human hepatocytes harboring an HEV replicon. Inhibitors of HSP90 (iHSP90) markedly suppressed HEV replication with efficacy exceeding that of conventional antivirals (IFNα and ribavirin) in vitro. Mechanistically, iHSP90 treatment released the viral replicase ORF1 protein from the ORF1-HSP90 complex and triggered rapid ubiquitin/proteasome-mediated degradation of ORF1, resulting in abrogated HEV replication. Furthermore, a preclinical trial in a Mongolian gerbil HEV infection model showed this novel anti-HEV strategy to be safe, efficient, and able to prevent HEV-induced liver damage. CONCLUSIONS: In this study, we uncover a proteostatic pathway that is critical for host-HEV interactions and we provide a foundation from which to translate this new understanding of the HEV life cycle into clinically promising antivirals. IMPACT AND IMPLICATIONS: Appropriate treatment options for hepatitis E virus (HEV)-infected pregnant women and immunocompromised patients are lacking; hence, there is an urgent need for safe and effective HEV-specific therapies. This study identified new antivirals (inhibitors of HSP90) that significantly limit HEV infection by targeting the viral replicase for degradation. Moreover, these anti-HEV drugs were validated in an HEV rodent model and were found to be safe and efficient for prevention of HEV-induced liver injury in preclinical experiments. Our findings substantially promote the understanding of HEV pathobiology and pave the way for antiviral development.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Humanos , Feminino , Gravidez , Proteostase , Proteínas do Complexo da Replicase Viral , Hepatite E/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteínas Virais , Replicação Viral
8.
Virology ; 578: 45-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463618

RESUMO

Influenza and COVID-19 are infectious respiratory diseases that represent a major concern to public health with social and economic impact worldwide, for which the available therapeutic options are not satisfactory. The RdRp has a central role in viral replication and thus represents a major target for the development of antiviral approaches. In this study, we focused on Influenza A virus PB1 polymerase protein and the betacoronaviruses nsp12 polymerase protein, considering their functional and structural similarities. We have performed conservation and druggability analysis to map conserved druggable regions, that may have functional or structural importance in these proteins. We disclosed the most promising and new targeting regions for the discovery of new potential polymerase inhibitors. Conserved druggable regions of putative interaction with favipiravir and molnupiravir were also mapped. We have also compared and integrated the current findings with previous research.


Assuntos
COVID-19 , Influenza Humana , Humanos , Antivirais/química , Proteínas do Complexo da Replicase Viral , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/metabolismo , RNA Viral/genética
9.
Microbiol Spectr ; 11(1): e0343222, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511657

RESUMO

Early and late gene expressions of baculoviruses have been known to rely on host RNA polymerase II and a virus-encoded RNA polymerase, separately. In this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) recombinant bacmids with the individual RNA polymerase subunit genes deleted could support low levels of expression of a reporter gene under the control of the promoter of a typical late gene, vp39, in transfected Sf9 cells. Through multistep subcloning of a genomic library of the virus and transient expression assay analysis, ie1 was identified to be the only viral gene that was responsible for activation of late gene expression in the absence of the viral RNA polymerase. Furthermore, IE1 was found to be capable of activating reporter gene expression from the promoters of additional late genes polh, p6.9, odv-e18, odv-e25, and gp41, independent of any additional viral factors. Deletion of ie1 from the virus genome eliminated late gene expression. The IE1-activated late gene expression was enhanced by the viral hr4b. It was shown to be insensitive to inhibition of α-amanitin and did not appear to have stable transcription start sites. It is proposed that IE1 may serve to recruit newly synthesized viral RNA polymerase to viral DNA by activating low levels of pretranscription of the late genes to create an appropriate DNA conformation. IMPORTANCE The late gene expression of baculovirus has been known to depend on the virus-encoded RNA polymerase, which consists of four subunits. The immediate-early gene ie1 was found to be required for viral early gene expression, late gene expression, and DNA replication. How it functions in late gene expression remains unclear. In this study, we found that AcMNPV IE1 could activate low levels of gene expression from late gene promoters independently of any additional viral factors, with nonspecific transcription start sites. This new finding will shed light on the role of IE1 in the regulation of late gene expression and the understanding of the mechanism of late gene transcription initiation.


Assuntos
Baculoviridae , Proteínas do Complexo da Replicase Viral , Linhagem Celular , RNA Viral , RNA Polimerases Dirigidas por DNA , Expressão Gênica
10.
Sci Rep ; 12(1): 17882, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284144

RESUMO

The mining of genomes from non-cultivated microorganisms using metagenomics is a powerful tool to discover novel proteins and other valuable biomolecules. However, function-based metagenome searches are often limited by the time-consuming expression of the active proteins in various heterologous host systems. We here report the initial characterization of novel single-subunit bacteriophage RNA polymerase, EM1 RNAP, identified from a metagenome data set obtained from an elephant dung microbiome. EM1 RNAP and its promoter sequence are distantly related to T7 RNA polymerase. Using EM1 RNAP and a translation-competent Escherichia coli extract, we have developed an efficient medium-throughput pipeline and protocol allowing the expression of metagenome-derived genes and the production of proteins in cell-free system is sufficient for the initial testing of the predicted activities. Here, we have successfully identified and verified 12 enzymes acting on bis(2-hydroxyethyl) terephthalate (BHET) in a completely clone-free approach and proposed an in vitro high-throughput metagenomic screening method.


Assuntos
Metagenoma , Proteínas do Complexo da Replicase Viral , Sistema Livre de Células/metabolismo , RNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Metagenômica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
11.
Virology ; 576: 1-17, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126429

RESUMO

Replication of positive-strand RNA viruses depends on usurped cellular membranes and co-opted host proteins. Based on pharmacological inhibition and genetic and biochemical approaches, the authors identified critical roles of the cellular Cdc48 unfoldase/segregase protein in facilitating the replication of tomato bushy stunt virus (TBSV). We show that TBSV infection induces the expression of Cdc48 in Nicotiana benthamiana plants. Cdc48 binds to the TBSV replication proteins through its N-terminal region. In vitro TBSV replicase reconstitution experiments demonstrated that Cdc48 is needed for efficient replicase assembly and activity. Surprisingly, the in vitro replication experiments also showed that excess amount of Cdc48 facilitates the disassembly of the membrane-bound viral replicase-RNA template complex. Cdc48 is also needed for the recruitment of additional host proteins. Because several human viruses, including flaviviruses, utilize Cdc48, also called VCP/p97, for replication, we suggest that Cdc48 might be a common panviral host factor for plant and animal RNA viruses.


Assuntos
Tombusvirus , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Proteínas do Complexo da Replicase Viral , Replicação Viral/genética , Proteína com Valosina/metabolismo
12.
J Virol ; 96(16): e0084122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924922

RESUMO

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Assuntos
Exorribonucleases , Aptidão Genética , Vírus da Hepatite Murina , Proteólise , RNA Viral , Proteínas não Estruturais Virais , Proteínas do Complexo da Replicase Viral , Animais , Exorribonucleases/genética , Exorribonucleases/metabolismo , Camundongos , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/fisiologia , Mutação , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Recombinação Genética , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
13.
J Virol ; 96(13): e0052422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678601

RESUMO

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Assuntos
Nudiviridae , Transcrição Viral , Vespas , Animais , DNA Viral/genética , Nudiviridae/genética , Proteínas do Complexo da Replicase Viral , Vespas/virologia
14.
Virology ; 573: 1-11, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679629

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative disease caused by measles virus variants (SSPE viruses) that results in eventual death. Amino acid substitution(s) in the viral fusion (F) protein are key for viral propagation in the brain in a cell-to-cell manner, a specific trait of SSPE viruses, leading to neuropathogenicity. In this study, we passaged an SSPE virus in cultured human neuronal cells and isolated an adapted virus that propagated more efficiently in neuronal cells and exhibited increased cell-to-cell fusion. Contrary to our expectation, the virus harbored mutations in the large protein, a viral RNA-dependent RNA polymerase, and in the phosphoprotein, its co-factor, rather than in the F protein. Our results imply that upregulated RNA polymerase activity, which increases F protein expression and cell-to-cell fusion, could be a viral factor that provides a growth advantage and contributes to the adaptation of SSPE viruses to neuronal cells.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/fisiologia , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Regulação para Cima , Proteínas Virais de Fusão/genética , Proteínas do Complexo da Replicase Viral
15.
Nat Commun ; 13(1): 3526, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725571

RESUMO

Recognition of promoters in bacterial RNA polymerases (RNAPs) is controlled by sigma subunits. The key sequence motif recognized by the sigma, the -10 promoter element, is located in the non-template strand of the double-stranded DNA molecule ~10 nucleotides upstream of the transcription start site. Here, we explain the mechanism by which the phage AR9 non-virion RNAP (nvRNAP), a bacterial RNAP homolog, recognizes the -10 element of its deoxyuridine-containing promoter in the template strand. The AR9 sigma-like subunit, the nvRNAP enzyme core, and the template strand together form two nucleotide base-accepting pockets whose shapes dictate the requirement for the conserved deoxyuridines. A single amino acid substitution in the AR9 sigma-like subunit allows one of these pockets to accept a thymine thus expanding the promoter consensus. Our work demonstrates the extent to which viruses can evolve host-derived multisubunit enzymes to make transcription of their own genes independent of the host.


Assuntos
RNA Viral , Proteínas do Complexo da Replicase Viral , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxiuridina , Regiões Promotoras Genéticas/genética , Fator sigma/metabolismo , Transcrição Gênica
16.
Microbiol Spectr ; 10(3): e0027222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35583360

RESUMO

Poxviruses have large DNA genomes, and they are able to infect multiple vertebrate and invertebrate animals, including humans. Despite the eradication of smallpox, poxvirus infections still remain a significant public health concern. Vaccinia virus (VV) is the prototypic member in the poxviridae family and it has been used extensively for different prophylactic applications, including the generation of vaccines against multiple infectious diseases and/or for oncolytic treatment. Many attempts have been pursued to develop novel attenuated forms of VV with improved safety profiles for their implementation as vaccines and/or vaccines vectors. We and others have previously demonstrated how RNA viruses encoding codon-deoptimized viral genes are attenuated, immunogenic and able to protect, upon a single administration, against challenge with parental viruses. In this study, we employed the same experimental approach based on the use of misrepresented codons for the generation of a recombinant (r)VV encoding a codon-deoptimized A24R gene, which is a key component of the viral RNA polymerase. Similar to our previous studies with RNA viruses, the A24R codon-deoptimized rVV (v-A24cd) was highly attenuated in vivo but able to protect, after a single intranasal dose administration, against an otherwise lethal challenge with parental VV. These results indicate that poxviruses can be effectively attenuated by synonymous codon deoptimization and open the possibility of using this methodology alone or in combination with other experimental approaches for the development of attenuated vaccines for the treatment of poxvirus infection, or to generate improved VV-based vectors. Moreover, this approach could be applied to other DNA viruses. IMPORTANCE The family poxviridae includes multiple viruses of medical and veterinary relevance, being vaccinia virus (VV) the prototypic member in the family. VV was used during the smallpox vaccination campaign to eradicate variola virus (VARV), which is considered a credible bioterrorism threat. Because of novel innovations in genetic engineering and vaccine technology, VV has gained popularity as a viral vector for the development of vaccines against several infectious diseases. Several approaches have been used to generate attenuated VV for its implementation as vaccine and/or vaccine vector. Here, we generated a rVV containing a codon-deoptimized A24R gene (v-A24cd), which encodes a key component of the viral RNA polymerase. v-A24cd was stable in culture cells and highly attenuated in vivo but able to protect against a subsequent lethal challenge with parental VV. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated VV and/or vaccine vectors.


Assuntos
Poxviridae , Varíola , Vacinas Virais , Vírus , Animais , Códon , Poxviridae/genética , Desenvolvimento de Vacinas , Vacinas Atenuadas/genética , Vírus Vaccinia/genética , Proteínas do Complexo da Replicase Viral , Vacinas Virais/genética , Vírus/genética
17.
Viruses ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458518

RESUMO

To understand the problem of persistent Hepatitis B virus (HBV) viraemia in HIV/HBV co-infected patients on HBV-active antiretroviral therapy (ART), we assessed the rate of HBV virological response in patients on HBV-active ART in KwaZulu-Natal, South Africa, and analysed factors associated with persistent HBV viraemia. One hundred and fifty eligible participants with a chronic HBV diagnosis, with or without HIV coinfection, were enrolled and followed up after 6 months. The HBV pol gene was sequenced by next-generation sequencing and mutations were determined using the Stanford HBVseq database. Logistic regression analysis was used to assess factors associated with HBV viraemia at 6-month follow-up. The mean duration of HBV-active ART was 24 months. Thirty-seven of one hundred and six (35%) participants receiving HBV-active ART for longer than 6 months had virological failure. Advanced immunosuppression with CD4+ cell counts <200 cells/µL was independently associated with persistent HBV viraemia, aOR 5.276 (95% CI 1.575−17.670) p = 0.007. A high proportion of patients on HBV-active ART are unsuppressed, which will ultimately have an impact on global elimination goals. Better monitoring should be implemented, especially in HIV-coinfected patients with low CD4+ cell counts and followed by early HBV drug-resistance testing.


Assuntos
Coinfecção , Infecções por HIV , Vírus da Hepatite B , Hepatite B , Proteínas do Complexo da Replicase Viral , Viremia , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Contagem de Linfócito CD4 , DNA Viral/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B/genética , Humanos , Mutação , África do Sul/epidemiologia , Carga Viral , Proteínas do Complexo da Replicase Viral/genética , Viremia/genética
18.
J Virol ; 96(4): e0209221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935435

RESUMO

Influenza A viruses are negative-sense RNA viruses that rely on their own viral replication machinery to replicate and transcribe their segmented single-stranded RNA genome. The viral ribonucleoprotein complexes in which viral RNA is replicated consist of a nucleoprotein scaffold around which the RNA genome is wound, and a heterotrimeric RNA-dependent RNA polymerase that catalyzes viral replication. The RNA polymerase copies the viral RNA (vRNA) via a replicative intermediate, called the cRNA, and subsequently uses this cRNA to make more vRNA copies. To ensure that new cRNA and vRNA molecules are associated with ribonucleoproteins in which they can be amplified, the active RNA polymerase recruits a second polymerase to encapsidate the cRNA or vRNA. Host factor ANP32A has been shown to be essential for viral replication and to facilitate the formation of a dimer between viral RNA polymerases. Differences between mammalian and avian ANP32A proteins are sufficient to restrict viral replication. It has been proposed that ANP32A is only required for the synthesis of vRNA molecules from cRNA but not vice versa. However, this view does not match recent molecular evidence. Here we use minigenome assays, virus infections, and viral promoter mutations to demonstrate that ANP32A is essential for both vRNA and cRNA synthesis. Moreover, we show that ANP32A is not only needed for the actively replicating polymerase, but not for the polymerase that is encapsidating nascent viral RNA products. Overall, these results provide new insights into influenza A virus replication and host adaptation. IMPORTANCE Zoonotic avian influenza A viruses pose a constant threat to global health, and they have the potential to cause pandemics. Species variations in host factor ANP32A play a key role in supporting the activity of avian influenza A virus RNA polymerases in mammalian hosts. Here we show that ANP32A acts at two stages in the influenza A virus replication cycle, supporting recent structural experiments, in line with its essential role. Understanding how ANP32A supports viral RNA polymerase activity and how it supports avian polymerase function in mammalian hosts is important for understanding influenza A virus replication and the development of antiviral strategies against influenza A viruses.


Assuntos
Vírus da Influenza A/fisiologia , Proteínas Nucleares/metabolismo , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Animais , Galinhas , Genoma Viral , Humanos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
19.
EMBO J ; 41(2): e108713, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888888

RESUMO

Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.


Assuntos
/virologia , Vírus de Plantas/patogenicidade , Vacúolos/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Ligação Proteica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/virologia , Proteínas do Complexo da Replicase Viral/química , Replicação Viral
20.
Virology ; 567: 1-14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933176

RESUMO

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Membranas Intracelulares/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Camundongos , Vírus da Hepatite Murina , Mutação , Ligação Proteica , Domínios Proteicos , RNA Viral/biossíntese , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Compartimentos de Replicação Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...